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Abstract
The variance of the local density of the pair contact process with diffusion is
investigated in a bosonic description. At the critical point of the absorbing phase
transition (where the average particle number remains constant) it is shown that
for a lattice dimension d > 2 the variance exhibits a phase transition: for high
enough diffusion constants, it asymptotically approaches a finite value, while
for low diffusion constants the variance diverges exponentially in time. This
behaviour also appears in the density correlation function, implying that the
correlation time is negative. Yet one has dynamical scaling with a dynamical
exponent calculated to be z = 2.

PACS numbers: 05.30.Jp, 05.70.Fh

1. Introduction

A prototypical example for critical phenomena in nonequilibrium statistical physics is the
absorbing phase transition. This is a transition from an active fluctuating phase with a finite
particle density to an absorbing state where any dynamics is suppressed. One has found
rather robust universality classes, e.g. the class of directed percolation (DP) and the parity
conserving (PC) universality class. A member of the DP-class is the pair contact process where
two neighbouring particles may create an offspring on a third lattice site or may annihilate
each other.

This model extended by particle diffusion—the pair contact process with diffusion
(PCPD)—has attracted much interest because it is not known to which universality class
it belongs. Several possibilities have been discussed: it was found that some exponents are
very close to those of the PC class [1], more recent investigations however give hints of a
DP behaviour [2]. It was also suggested that the critical behaviour of the PCPD defines a
new universality class [3, 4], or may depend on the diffusion constant [7]. Analytical results
are rare in this field and one has to revert to numerical methods such as the density matrix
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renormalization group (DMRG) or Monte Carlo simulations. An exception is [5] where the
PCPD is investigated by a renormalization group approach by applying an ε-expansion around
the upper critical dimension dc = 2. The computation of the scaling exponents leads to the
conclusion that the PCPD belongs to a universality class not known before, but it is not yet
settled that these results are applicable to the one-dimensional case [5]. For a comprehensive
review of the current state of the art we refer to [6].

Analytical treatment becomes easier for the bosonic description of the model where the
exclusion interaction—which constraints the number of particles at one site to at most one—is
dropped. In this case a field theoretic approach due to Howard and Täuber [8] is available.
A drawback of this approach is that it is not suitable for deciding the universality class of
the model with particle number restriction. In this paper, we show by an exact treatment
of the model that the diffusion constant and the lattice dimension have considerable impact
on the phase transition and correlations of the bosonic PCPD. Although the particle exclusion
interaction is crucial for the behaviour of the system this investigation gives some insight into
the role of diffusion in the PCPD.

2. Model

We define the following process: on an infinite d-dimensional cubic lattice particles
(‘A’) are diffusing with rate D in each spatial direction. Additionally they branch and
annihilate: k � 1 particles A are created with rate µ out of any set of m � 1 particles
(m fixed), and l � 1 particles are annihilated with rate λ out of any set of p � l particles
(l fixed):

mA
µ→ (m + k)A pA

λ→ (p − l)A A· D↔ ·A. (1)

The number of particles on each lattice site is not restricted—the creation and annihilation
processes take place on one lattice site. Thus the bosonic representation of the process is used.
We try to keep the description as general as possible, but as we will see, analytical results are
available only for few cases. In this paper, we investigate the two cases where p = m = 1 or
p = m = 2 and arbitrary k and l � p. One special case is the PCPD, where m = p = l = 2
and k = 1.

Following the notation and formalism introduced in [9, 10] we define the site occupation
numbers as �n = {n(x)}. Then the time-dependent probability vector describing the system
can be expressed as

|F(t)〉 =
∑
n(x)

P (�n, t)|�n〉 (2)

where the |�n〉 are the basis vectors spanning the state space and P(�n, t) is the probability
distribution of the site occupation numbers. The master equation describing the time evolution
of the probability distribution can then be written as

∂

∂t
|F(t)〉 = −H|F(t)〉 (3)

where H is the stochastic generator of the system, often called ‘Hamiltonian’ by analogy of
the master equation with the Schrödinger equation (in imaginary time) [11]. Let a(x) and
a(x)† be the space-dependent annihilation and creation operators and n(x) = a†(x)a(x) the
particle number operator, then the Hamiltonian is given by
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H = −D

d∑
k=1

∑
x

[a(x)a†(x + k) + a†(x)a(x + k) − 2n(x)]

− λ
∑

x

[
(a†(x))(p−l)(a(x))p −

p∏
i=1

(n(x) − i + 1)

]

− µ
∑

x

[
(a†(x))(m+k)(a(x))m −

m∏
i=1

(n(x) − i + 1)

]
(4)

where k ≡ k(k) = (. . . , 0, 1, 0, . . .)T is the kth unit space vector. The time evolution of an
operator b(y) is calculated by

∂

∂t
b(y) = [H, b(y)]. (5)

Using the commutator rule [a(x), a†(y)] = δx,y we get after straightforward calculations

∂

∂t
〈a(x)〉 = D

d∑
k=1

{〈a(x − k)〉 + 〈a(x + k)〉 − 2〈a(x)〉} − λl〈a(x)p〉 + µk〈a(x)m〉 (6)

∂

∂t
〈a(x)a(y)〉 =

x�=y
D

d∑
k=1

{〈a(x)a(y − k)〉 + 〈a(x)a(y + k)〉 + 〈a(x − k)a(y)〉

+ 〈a(x + k)a(y)〉 − 4〈a(x)a(y)〉} − λl{〈a(x)a(y)p〉 + 〈a(x)pa(y)〉}
+ µk{〈a(x)a(y)m〉 + 〈a(x)ma(y)〉} (7)

∂

∂t
〈(a(x))2〉 = 2D

d∑
k=1

{〈a(x)a(x − k)〉 + 〈a(x)a(x + k)〉 − 2〈a(x)2〉}

+ λl{(1 + l − 2p)〈a(x)p〉 − 2〈a(x)p+1〉}
− µk{(1 − k − 2m)〈a(x)m〉 − 2〈a(x)m+1〉}. (8)

Using 〈n(x)〉 = 〈a(x)〉 and 〈n(x)2〉 = 〈a(x)2〉 + 〈a(x)〉 this set of coupled difference-
differential equations allows for the analytical calculation of the time-dependent expectation
value of the particle density and its autocorrelation in some special cases.

We restrict ourselves to the case p = m where the creation and annihilation processes
are balanced and an absorbing phase transition can be found. For λl > µk the particles
die out exponentially (p = m = 1) or according to a power law (p = m > 1), while for
λl < µk the particle density diverges. Here a crucial difference between the description
with and without particle number restriction can be seen: while in the models with exclusion
interaction the absorbing phase transition is of a second order, the bosonic model exhibits a
first-order transition.

In analogy with the exclusion model we call the rate which divides the two different
behaviours the ‘critical’ rate, which from equation (6) can be read off as

λc = µk/l (9)

for a given µ. For this rate the particle density is constant for all times 〈a(x, t)〉 = ρ0 (for
homogeneous initial conditions), as can be seen from equation (6) which reduces to a diffusion
equation. Thus the interesting quantity is the variance σ 2 = 〈n(x)2〉 − 〈n(x)〉2 which we shall
investigate in what follows.
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Eliminating p and λ in equations (6)–(8) one gets

∂

∂t
〈a(x)〉 = D

d∑
k=1

{〈a(x − k)〉 + 〈a(x + k)〉 − 2〈a(x)〉}

∂

∂t
〈a(x)a(y)〉 =

x�=y
D

d∑
k=1

{〈a(x)a(y − k)〉 + 〈a(x)a(y + k)〉 + 〈a(x − k)a(y)〉
(10)

+ 〈a(x + k)a(y)〉 − 4〈a(x)a(y)〉}
∂

∂t
〈(a(x))2〉 = 2D

d∑
k=1

{〈a(x)a(x − k)〉 + 〈a(x)a(x + k)〉 − 2〈a(x)2〉} + µk(k + l)〈a(x)m〉.

We see that this set of equations is only closed for the cases m = 1 or m = 2.
In the case of a vanishing diffusion constant, D = 0, the lattice sites are independent of

each other. Thus the description of the process reduces to the zero-dimensional case d = 0,

∂

∂t
〈a(x)〉 = 0

∂

∂t
〈(a(x))2〉 = µk(k + l)〈a(x)m〉 (11)

and has to be treated separately.

2.1. Contact process with diffusion, m = 1

Here, only l = 1 is possible. Additionally by rescaling µ we may fix k = 1. This case has
already been considered in [13] as a model for the clustering of biological organisms [14]. For
convenience we summarize the main results here.

For D = 0 or d = 0 equation (11) directly yields 〈a(x)2〉 = c0 + c1t and thus the variance
diverges. For D �= 0 the fluctuations of the particle density diverge for dimensions d � 2
while they remain finite for d > 2,

〈a(x)2〉 =



c1t
−d/2+1 d < 2

c2 ln t d = 2
c3 + c4t

−d/2+1 d > 2
(12)

where t � 1 and c0, . . . , c4 are positive constants.

2.2. Pair contact process with diffusion, m = 2

We now derive analytically the late-time behaviour of the solution for m = 2.
For D = 0 or d = 0 equation (11) yields

〈a(x2)〉 = ρ2
0 exp(t/τ ) τ = 1

µk(k + l)
. (13)

The variance diverges exponentially in time as opposed to m = 1 where the divergence is
linear. Only for times small compared to τ the variance (13) grows linearly.

For D �= 0 we get the solution by applying Fourier and Laplace transformations. We
also present the crossover from short- to late-time behaviour, which has to be calculated
numerically.

First we rescale time by

t → t

2D
(14)
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and define

Fx(r, t) = 〈a(x)a(x + r)〉 = 〈n(x)n(x + r)〉 − δr,0〈n(x)〉
(15)

α = µk(k + l)

2D
.

The parameter α is a measure for the weighting of reaction rates to diffusion, small α

corresponds to dominant diffusion, while large α corresponds to dominating reaction rates. In
what follows, we consider only translational-invariant initial conditions, in which case Fx(r, t)
is independent of x. Using equation (10) we get the following difference-differential equation
for F:

∂

∂t
F (r, t) =

d∑
k=1

{F(r − k, t) + F(r + k, t) − 2F(r, t)} + δr,0αF(0, t)

=
d∑

k=1

	kF(r, t) + δr,0αF(0, t) (16)

where 	k is the discrete Laplacian concerning the kth component. The variance σ 2 is related
to F as follows:

σ(t)2 = F(0, t) + ρ0 − ρ2
0 . (17)

Here, we see that there is no qualitative difference between parity conserving models (k
and l even) and non-parity conserving models—models with different k and l differ only by
different creation and annihilation rates.

This kind of equation can be solved using the Fourier transformation:

f (q, t) =
∑

r

e−iqrF(r, t) F (r, t) =
∫

ddq
(2π)d

eiqrf (q, t). (18)

We get

∂

∂t
f (q, t) = −w(q)f (q, t) + αF(0, t) (19)

with the dispersion relation w(q) = −2
∑d

k=1(cos(qk) − 1). Integration yields

f (q, t) = e−w(q)t

{
f (q, 0) + α

∫ t

0
dτF (0, τ ) ew(q)τ

}
. (20)

As the initial condition we choose a Poisson-distribution F(r, 0) = ρ2
0 so that f (q, 0) =

δq,0ρ
2
0 . Thus we get

F(r, t) = ρ2
0 + α

∫ t

0
dτ F (0, τ )b(r, t − τ) (21)

with

b(r, t) =
∫

ddq
(2π)d

e−w(q)t+iqr

= e−2 dt Ir1(2t) · · · Ird
(2t) (22)

where Ir(t) is the modified Bessel function of order r. The dimension d is now just a parameter
which can formally take real values. Although this is not physical it allows for the investigation
of the dependence on the dimension.
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For r = 0 the long-time behaviour of the solution of the Volterra integral equation (21)
with the function b(t) given by equation (22) is known from the mean spherical model1. In
this context α plays the role of temperature. This analogy enables us to use known results from
the spherical model. Equation (21) can be solved using a temporal Laplace transformation
[15],

F̃ (p) =
∫ ∞

0
dt e−ptF (0, t). (23)

We get

F̃ (p) = ρ2
0

p
+ αF̃ (p)b̃(p) ⇔ F̃ (p) = ρ2

0

p(1 − αb̃(p))
. (24)

For late times F(0, t) is given by the behaviour of b̃(p) for small p, which crucially
depends on the dimension d (see for example [15]):

b̃(p) =




(4π)−d/2�(1 − d/2)p−(1−d/2) d < 2

2A1 − (4π)−d/2|�(1 − d/2)|pd/2−1 2 < d < 4

2A1 − 4A2p d > 4

Ak =
∫

ddq
(2π)d

1

(2w(q))k
.

(25)

This results in different behaviour of F(0, t) as we shall see in the next sections.
For all even integral dimensions d = 2, 4, . . . logarithmic corrections arise whose

investigation goes beyond the scope of this paper.

Case 1: d < 2. As for d < 2 the quantity b̃(p) diverges for p → 0, the denominator
of equation (24) has always a zero for p �= 0, so that F̃ (p) has a pole at a positive value
p = 1/τ . A pole of the Laplace transform corresponds to the exponential behaviour of the
original function and we get

F(0, t) ∝
t→∞ et/τ . (26)

For d = 1 the exact expression of b̃ is known [15]:

b̃(p) = 1√
p(p + 4)

(27)

which yields

τd=1 = 1√
4 + α2 − 2

. (28)

For any finite value of α the time scale τ is finite but diverges if α ↘ 0. This is in analogy
with the spherical model, where in one dimension the critical temperature is zero.

In order to investigate how the predicted asymptotic behaviour for large times is
approached we have performed a numerical integration of F(0, t), which is shown in figure 1.
For details of the numerical calculation see [12], where a similar integral equation is calculated.
We see that the asymptotic behaviour is approached quickly and the solution (26) is a good
approximation for times t > 1.

1 In the mean spherical model the spherical constraint is parametrized mathematically by a Lagrangian multiplier.
This multiplier is determined by the Volterra integral equation (21) where ρ2

0 is replaced by b(0, t) which does not
change the long time–time behaviour.
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Figure 1. Numerical calculation of F(0, t) for d = 1, α = 2, ρ0 = 0.1. The dashed line shows
the theoretical predicted slope τ ≈ 1.2071.

Case 2: 2 < d < 4. For d > 2 the quantity b̃(p) shows a qualitatively different behaviour:
it approaches the finite value 2A1 for p → 0. Therefore the F̃ (p) has a pole for positive p
only for α larger than a critical value given by

αc = 1

2A1
(29)

which is identical to the critical temperature in the spherical model. Thus we find a phase
transition in the behaviour of the autocorrelation F(0, t): for α > αc (low diffusion constant)
we recover the exponential divergence

F(0, t) ∝
t→∞ et/τ . (30)

with a time scale

τ =
(

α′

c2α

)− 1
d/2−1

(31)

with the reduced control parameter

α′ = α − αc

αc
(32)

and c2 = (4π)−d/2|�(1 − d/2)|. This time scale diverges if we approach α ↘ αc.
For α < αc (high diffusion constant) the pole of F̃ (p) vanishes and F(0, t) asymptotically

approaches a finite value

F∞ = lim
t→∞ F(0, t) = ρ2

0

1 − α/αc
> ρ2

0 (33)

which diverges if we approach α ↗ αc.
Therefore, a suitable order parameter for this phase transition is F−1

∞ which decreases
linearly to zero for α ↗ αc and is equal to zero for α > αc.

For α = αc we get

F̃ (p) = (4π)d/2ρ2
0

|�(1 − d/2)| αc

1

pd/2
(34)

which results in a power law

F(0, t) ∝ td/2−1 (35)

and hence in a power law divergence of the variance.
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t
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100

1000

F(
0,

t)

Figure 2. Numerical calculation of F(0, t) for d = 3, ρ0 = 1, α = 2 < αc (solid line) and
α = 4.2 > αc (dashed line). The dotted line shows the theoretical predicted slope τ ≈ 30.4, the
dashed-dotted line the theoretical predicted asymptotic value F(0, t = ∞) ≈ 2.02.

λ

µ

ρ∗= 0

αc ρ∗= 8

Figure 3. The phase diagram of the system for a fixed diffusion constant D: in the limit of t → ∞
for λ > µk/l the stationary density ρ∗ is zero while it diverges for λ < µk/l. For λ = µk/l the
density is constant, ρ∗ = ρ0 and the variance function is bounded for α < αc, while it diverges
exponentially for α > αc and algebraically for α = αc, where α = µk(k + l)/(2D).

In figure 2 the numerical calculation of the crossover to the behaviour for large times is
shown for α < αc and α > αc.

Case 3: d > 4. For d > 4 we find qualitatively the same behaviour as for 2 < d < 4. Like
in the previous case, F̃ (p) has a pole at a positive p only for values α > αc = 1/(2A1). For
α > αc the time scale of the exponential increase is given by

τ =
(

α′

4A2α

)−1

. (36)

The difference from the case 2 < d < 4 is that this time scale is now independent of the
dimension d, indicating that we are in the mean-field region.

For α < αc, F (0, t) approaches the asymptotic value given by equation (33). For α = αc

we get

F̃ (p) = ρ2
0

4A2αcp2
(37)

which results in a power law

F(0, t) ∝ t. (38)

These results are summed up in the phase diagram in figure 3.
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Figure 4. Numerical calculation of F (r = (r, 0, . . .), t) for d = 3, α = 2 < αc, ρ0 = 1 and times
t = 50, 100, 150, . . . , 400.

3. Spatial correlations

In the mean-field regime (d > 4) the behaviour of the correlation function F(r, t) can be
calculated analytically in the limit of large r and t. As derived in the appendix we get

F(r, t) − ρ2
0 =




ρ2
0α

4πd/2|α′| r
2−d�

(
d

2
− 1,

r2

4t

)
α′ < 0

ρ2
0

64A2πd/2
r4−d�

(
d,

r2

4t

)
α′ = 0

ρ2
0

(8π)(d−1)/2A
(d−2)/2
2

(
α′

α

)(d−4)/2(
r

ξ

)(1−d)/2

exp (t/τ − r/ξ) 1 � α′ > 0

(39)

where α′ = (α−αc)/αc is the reduced control parameter, � is the incomplete Gamma function
and � is a scaling function defined by

�(d, u) =
∫ ∞

u

dy
�

(
d
2 − 1, y

)
y2

. (40)

Above the critical point the correlations diverge; the time scale τ is given by equation (36)
and the correlation length by

ξ = √
τ =

√
4A2α

α′ . (41)

Interestingly, as for αc > 0 the correlations increase with time, what in usual dynamical
critical phenomena would be called the correlation time is negative while the correlation length
is positive. For α′ � 0 the dependence on r2/t directly shows that the dynamical exponent
is z = 2. For α′ > 0 the time scale τ is the square of the length scale ξ , therefore also in
this case the dynamical exponent is z = 2. The same dynamical exponent appears in a field
theoretical treatment of the fermionic PCPD [5].

No analytical solution is available in the case 2 < d < 4, thus we evaluate the integral
(21) numerically. Figure 4 shows the spatial dependence of the correlation function along the
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Figure 5. Numerical calculation of F(r = (r, 0, . . .), t) for d = 3, α = 6 > αc, ρ0 = 1 and times
t = 50, 100, 150, . . . , 400.

axis r = (r, 0, . . .), for α < αc; figure 5 shows the case α > αc. A collapse of the calculated
data points is achieved if we assume the following functional dependence:

F(r, t) − ρ2
0 ∝

{
r2−df1(r

2/t) α′ < 0

F(0, t)f2(d, r) α′ > 0,
(42)

where f1 is a scaling function and f2(d, r) is a function that only depends on d and r. This
result is in qualitative agreement with the previously derived formula for d > 4.

4. Discussion

Apart from the spherical model this phase transition is related to a much simpler model: on a
d-dimensional cubic lattice non-interacting particles are diffusing with rate D and additionally
at site x = 0 particles may branch as A → 2A with rate α′ = αD. The equation for the
time evolution of the particle density 〈n(x, t)〉 is just given by equation (16). We can adopt
the solutions for F(r, t) by substituting the initial condition by ρ2

0 → ρ0. In particular, we
recover a phase transition for the particle density at the origin. While in the original process
it is rather complicated to understand the physical meaning of the behaviour of the second
moment, in this model we understand the behaviour of the first moment: for d = 1 diffusion
does not suffice to spread the particles on the lattice fast enough and the particle density at
x = 0 diverges for any given parameters. For higher dimensions additional spatial directions
are accessible to spread particles and as a consequence the particle density at x = 0 remains
finite for high enough diffusion constant D.

The fact that the autocorrelation function is diverging while the particle density remains
constant allows some conclusions concerning the distribution function for the particles p(n)

for late times. On the one hand, if 〈n〉 = ∑
n np(n) is finite then for large n the distribution

function p(n) < c1n
−β with β > 2. On the other hand, if 〈n2〉 = ∑

n n2p(n) is infinite then
for large n the distribution function p(n) > c2n

−β with β < 3 with some positive constants
c1, c2. Thus the distribution function follows for large n a power law p(n) ∝ n−β with
2 < β < 3.

In summary, we have shown that for d > 2 the bosonic PCPD exhibits a phase
transition for 〈a(x)2〉 and thus for the autocorrelation function σ(t)2 = 〈n(x)2〉 − 〈n(x)〉2 =
〈a(x)2〉 + 〈n(x)〉 − 〈n(x)〉2. The order parameter F−1

∞ decreases linearly to zero for α ↗ αc
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and is equal to zero for α > αc, where α is proportional to the ratio of the reaction rates and
the diffusion constant. Thus diffusion has a large influence in this process, and it must be high
enough in order to avoid a divergence of the autocorrelation.

We have also shown that the critical properties of this process are related to the mean
spherical model. As the spherical model is a model for magnetism this analogy is rather
intriguing and the question arises whether it is just accidental.
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Appendix

For the mean-field case d > 4 the solution of F(r, t) in the limit of large r and t can be derived
analytically, as presented in what follows:

With the definition

G(r, t) = F(r, t) − ρ2
0 (A.1)

the integral equation can be transformed to

G(r, t) = α

∫ t

0
dτ G(0, τ )b(r, t − τ) + αρ2

0

∫ t

0
dτ b(r, t). (A.2)

Using a Laplace transformation we get

G̃(r, p) = αG̃(0, p)b̃(r, p) + αρ2
0
b̃(r, p)

p
(A.3)

setting r = 0 determines G̃(0, p) which yields

G̃(r, p) = αρ2
0

b̃(r, p)

p(1 − αb̃(0, p))
. (A.4)

The Fourier transform of this equation is

g̃(q, p) = ρ2
0α

1

p(1 − αb̃(0, p))

1

p + w(q)
. (A.5)

For the mean-field case, d > 4, b̃(0, p) takes the simple form

b̃(0, p) = 1/αc − pγ/α (A.6)

and we get

g̃(q, p) = ρ2
0α

γ

1

p (p − α′/γ )

1

p + w(q)
. (A.7)

Here we defined the reduced control parameter α′ = (α − αc)/αc and γ = 4A2α. Although
the function b̃ does not depend on dimension for d > 4, generally a dependence of the solution
G(r, t) on dimension is still possible as the inverse Fourier transform depends on d, which
does not affect the critical exponents. Using an expansion into partial fractions we get

g̃(q, p)= ρ2
0α

(
− 1

α′w(q)

1

p
+

1

α′(w(q) + α′/γ )

1

p − α′/γ
+

1

γw(q)(w(q) + α′/γ )

1

p + w(q)

)
.

(A.8)



4720 M Paessens and G M Schütz

The inverse Laplace transform of this expression reads

g(q, t) = ρ2
0α

(
− 1

α′w(q)
+

1

α′ (w(q) + α′/γ )
exp

(
α′

γ
t

)

+
1

γw(q) (w(q) + α′/γ )
exp (−w(q)t)

)
. (A.9)

Although the second term is not Laplace transformable for α′ > 0 this result is correct and
can be derived by transforming the function H(r, t) = exp

(−(
α′
γ

+ ε
)
t
)
G(r, t) with ε > 0.

The inverse Fourier transform of the first term of (A.9) is∫
ddq

(2π)d
eiqr 1

w(q)
=

∫ ∞

0
dx

∫
ddq

(2π)d
exp(−w(q)x) eiqr

=
∫ ∞

0
dx e−2 dxIr1(2x) · . . . · Ird

(2x)

≈
|r|�1

∫ ∞

0
dx(4πx)−d/2 exp

(
− r2

4x

)

= �
(

d
2 − 1

)
4πd/2

r2−d . (A.10)

For the long-time limit the second term contributes significantly only for α′ > 0. Defining
b2 = α′/γ we get for this case:∫

ddq
(2π)d

eiqr

w(q) + b2
=

∫ ∞

0
dx

∫
ddq

(2π)d
exp(−(w(q) + b2)x) eiqr

=
∫ ∞

0
dx exp(−b2x) e−2 dxIr1(2x) · . . . · Ird

(2x)

≈
b2�1,|r|�1

(4π)−d/2
∫ ∞

0
dx x−d/2 exp

(
− r2

4x
− b2x

)

= (4π)−d/2

(
r2

4

)1−d/2 ∫ ∞

0
dz zd/2−2 exp

(
−z − b2r2

4z

)

= (4π)−d/2

(
r2

4

)1−d/2

22−d/2 (br)d/2−1 Kd/2−1 (br)

≈
r�1

(4π)−d/2

(
r2

4

)1−d/2

22−d/2 (br)d/2−1

√
π

2

exp(−br)√
br

= 1

2(d+1)/2π(d−1)/2
b(d−3)/2r(1−d)/2 exp(−br)

= 1

2(d+1)/2π(d−1)/2

(
α′

γ

)(d−3)/4

r(1−d)/2 exp

(
−

√
α′

γ
r

)
, (A.11)

where Kd/2−1 is the modified Bessel function of second kind.
For α′ > 0 the third term is transformed to∫
ddq

(2π)d

eiqr exp (−w(q)t)

w(q)(w(q) + b2)

=
∫ ∞

0
dx

∫
ddq

(2π)d
exp(−(w(q) + b2)x)

eiqr exp(−w(q)t)

w(q)

=
∫ ∞

0
dx exp(−b2x)

∫ ∞

t+x

dy

∫
ddq

(2π)d
exp(−w(q)y) eiqr
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=
∫ ∞

0
dx exp(−b2x)

∫ ∞

t+x

dy e−2 dyIr1(2y) · . . . · Ird
(2y)

≈
|r|�1

(4π)−d/2
∫ ∞

0
dx exp(−b2x)

∫ ∞

t+x

dy y−d/2 exp

(
− r2

4y

)

= (4π)−d/2t1−d/2

(
r2

4t

)1−d/2 ∫ ∞

0
dx exp(−b2x)

∫ r2

4t (1+x/t)

0
dz zd/2−1 exp(−z)

≈
t�1

r2−d

4πd/2

∫ ∞

0
dx exp(−b2x)

(∫ r2

4t

0
dz zd/2−1 exp(−z)

−
(

r2

4t

)d/2−1

exp

(
− r2

4t

)
x

t

)

= r2−d

4πd/2

∫ ∞

0
dx exp(−b2x)

(
�

(
d

2
− 1

)
− �

(
d

2
− 1,

r2

4t

)

−
(

r2

4t

)d/2−1

exp

(
− r2

4t

)
x

t

)

= r2−d

4πd/2
b−2

(
�

(
d

2
− 1

)
− �

(
d

2
− 1,

r2

4t

)

− b−2

t

(
r2

4t

)d/2−1

exp

(
− r2

4t

))
(A.12)

with the incomplete Gamma-function �(a, x) = ∫ ∞
x

dt ta−1 e−t .
For α′ < 0 the same result can be derived by substituting x → −x.
At the critical rate α′ = 0 equation (A.7) reduces to

g̃(q, p) = ρ2
0α

γ

1

p2

1

p + w(q)
. (A.13)

The inverse Laplace transform of this expression is given by

L−1

(
1

p2 (p + w(q))
, t

)
=

∫ t

0
dτ

∫ τ

0
dτ ′L−1

(
1

p + w(q)
, τ ′

)

=
∫ t

0
dτ

∫ τ

0
dτ ′ exp(−w(q)τ ′). (A.14)

The necessary conditions for this equality are fulfilled [16]:

lim
t→∞

(
e−pt

∫ t

0
dτ exp(−w(q)τ )

)
= 0

(A.15)

lim
t→∞

(
e−pt

∫ t

0
dτ

∫ τ

0
dτ ′ exp(−w(q)τ ′)

)
= 0.

This yields

G(r, t) = ρ2
0α

γ

∫ t

0
dτ

∫ τ

0
dτ ′

∫
ddq

(2π)d
exp(−w(q)τ ′)

= ρ2
0α

γ

∫ t

0
dτ

∫ τ

0
dτ ′ e−2 dxIr1(2x) · . . . · Ird

(2x)
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≈
|r|�1

ρ2
0α

γ

∫ t

0
dτ

∫ τ

0
dτ ′(4πτ ′)−d/2 exp

(
− r2

4τ ′

)

= ρ2
0α

γ (4π)d/2

(
r2

4

)−d/2+1 ∫ t

0
dτ

∫ ∞

r2
4τ

dz zd/2−2 exp(−z)

= ρ2
0α

4γπd/2
r2−d

∫ t

0
dτ �

(
d

2
− 1,

r2

4τ

)

= ρ2
0α

16γπd/2
r4−d

∫ ∞

r2
4t

dz
�

(
d
2 − 1, z

)
z2

. (A.16)

Thus we get the expressions (39) in the limit of large r and t.
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[10] Trimper S, Täuber U C and Schütz G M 2000 Phys. Rev. E 62 6071
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